翻訳と辞書
Words near each other
・ Raubal
・ Rauberflaket
・ Raubling
・ Raubold House
・ Raubritter
・ Raubsville, Pennsylvania
・ Raubtier
・ Raucaffricine beta-glucosidase
・ Raucaffrinoline
・ Rauceby
・ Rauceby Hospital
・ Rauceby railway station
・ Rauch
・ Rauch (company)
・ Rauch and Lang
Rauch comparison theorem
・ Rauch House
・ Rauch Partido
・ Rauch, Buenos Aires
・ Rauch, Minnesota
・ Rauch-Haus-Song
・ Raucheck
・ Rauchen und Yoga
・ Rauchenwarth
・ Rauchkofel
・ Rauchkofel Formation
・ Rauchkäse
・ Rauchtown
・ Rauchtown Run
・ Rauchtown, Pennsylvania


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Rauch comparison theorem : ウィキペディア英語版
Rauch comparison theorem
In Riemannian geometry, the Rauch comparison theorem, named after Harry Rauch who proved it in 1951, is a fundamental result which relates the sectional curvature of a Riemannian manifold to the rate at which geodesics spread apart. Intuitively, it states that for positive curvature, geodesics tend to converge, while for negative curvature, geodesics tend to spread. This theorem is formulated using Jacobi fields to measure the variation in geodesics.
==Statement of the Theorem==

Let M, \widetilde be Riemannian manifolds, let \gamma : (T ) \to M and \widetilde : () \to \widetilde be unit speed geodesic segments such that \widetilde(0) has no conjugate points along \widetilde, and let J, \widetilde be normal Jacobi fields along \gamma and \widetilde such that J(0) = \widetilde(0) = 0 and |D_t J(0)| = |\widetilde_t \widetilde(0)|. Suppose that the sectional curvatures of M and \widetilde satisfy K(\Pi) \leq \widetilde(\widetilde) whenever \Pi \subset T_ M is a 2-plane containing \dot(t) and \widetilde \subset T_ \widetilde is a 2-plane containing \dot(t)| for all t \in (T ).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Rauch comparison theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.